A desktop experimentation and research platform to drive, control and monitor Microheaters, and to record and analyze their thermal response.  It comprises a Microheater and associated electronics, Software to define Electrical Excitation and to observe the corresponding response of the Microheater.

Structure & Principle:

Platinum based Microheater with integrated temperature sensor

  • Micro-structures(coil) in platinum that can be heated from room temperature to several hundreds of degree Celsius within a few milliseconds.
  • The heater coil is sandwiched between layers of silicon dioxide and            silicon nitride.
  • This sandwiched membrane is suspended on a silicon substrate and acts like a      hot plate when connected to a power source due to resistive heating.
  • There is a thermally coupled RTD which acts as an integrated temperature sensor      for in-situ temperature measurement/sensing.


  • The Microheater is given an electrical excitation in the form of standard input signals like sine, square, triangular, etc. or user-defined inputs
  •  This excitation causes the heater to ramp up to several tens and hundreds of degrees with a characteristic thermal profile that depends on the type of input .
  •  The thermal profile can be seen as a graph of Temperature vs Time
  •  The rise and fall times to different input signals can be analyzed
  •  Each PCB comes with 2 Microheaters to enable carrying out differential measurements
  •  Experiments can be performed to study the effect of addition of thermal mass on the thermal response of the Microheater

Features and specifications:

  • Micro Heater Instrumentation System with Electrical readout.
  • Real time display (3.5”)and data logging.
  • Compact Table Top devices, no bulky instrumentation required.
  • Operation Mode: Standalone and PC.
  • Easy Plug and Play operation.
  • Results can be analyzed with our software.

For Research/Projects/Product Development:

Sensimer can be used to carry out various nano-scale heating, thermal monitoring, thermal cycling & gas sensing experiments, etc. It can also take temperature v/s time schedule as an input to execute pre-defined thermal cycles like the ones used in PCR.


  • Design and Develop a MEMS based sensor for chemical/gas/flow detection.
  • Study and Analyze the response of the MEMS heater sensor due to various types of electrical excitation and understand their significance from productization point of view.
  • Set Up a MEMS and Sensor laboratory and encourage students to perform experiments, undertake projects and publish research papers.
  • Perform various nano-scale heating and sensing experiments with microheaters.